Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biomedicines ; 12(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540262

RESUMO

The NK cell exhaustion state evolving during extensive and prolonged cultivation is still one of the limitations of NK cell approaches. In this research, we transduced NK cells with the hTERT and iCasp9 genes. hTERT overexpression can prevent the functional exhaustion of NK cells during long-term cultivation, but, still, the therapeutic use of such cells is unsafe without irradiation. To overcome this obstacle, we additionally transduced NK cells with the iCasp9 transgene that enables the rapid elimination of modified cells. We compared the proliferative and functional activities of the hTERT- and/or iCasp9-modified NK cells, determined their exhaustion state and monitored the levels of EOMES and T-BET, the main NK cell transcription factors. The hTERT and iCasp9 genes were shown to affect the EOMES and T-BET levels differently in the NK cells. The EOMES+T-BET+ phenotype characterized the functionally active NK cells during two months of culture upon stimulation with IL2 and K562-mbIL21 feeder cells, which induced the greatest expansion rates of the NK cells, independently of the transgene type. On the other hand, under cytokine stimulation, the hTERT-iCasp9-NK cells displayed improved proliferation over NK cells modified with iCasp9 alone and showed an increased proliferation rate compared to the untransduced NK cells under stimulation with IL2 and IL15, which was accompanied by reduced immune checkpoint molecule expression. The individual changes in the EOMES and T-BET levels strictly corresponded to the NK cell functional activity, the surface levels of activating and inhibitory receptors along with the expansion rate and expression levels of pro-survival and pro-apoptotic genes.

2.
Cells ; 13(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534374

RESUMO

NK cells play a decisive role in controlling hCMV infection by combining innate and adaptive-like immune reactions. The hCMV-derived VMAPRTLFL (LFL) peptide is a potent activator of NKG2C+ NK cells. Proposed here is an autologous system of LFL stimulation without T lymphocytes and exogenous cytokines that allows us to evaluate NK-cell hCMV-specific responses in more native settings. In this model, we evaluated LFL-induced IFNγ production, focusing on signaling pathways and the degranulation and proliferation of NK cells orchestrated by microenvironment cytokine production and analyzed the transcriptome of expanded NK cells. NK cells of individuals having high anti-hCMV-IgG levels, in contrast to NK cells of hCMV-seronegative and low-positive donors, displayed increased IFNγ production and degranulation and activation levels and enhanced proliferation upon LFL stimulation. Cytokine profiles of these LFL-stimulated cultures demonstrated a proinflammatory shift. LFL-induced NK-cell IFNγ production was dependent on the PI3K and Ras/Raf/Mek signaling pathways, independently of cytokines. In hCMV-seropositive individuals, this model allowed obtaining NK-cell antigen-specific populations proliferating in response to LFL. The transcriptomic profile of these expanded NK cells showed increased adaptive gene expression and metabolic activation. The results complement the existing knowledge about hCMV-specific NK-cell response. This model may be further exploited for the identification and characterization of antigen-specific NK cells.


Assuntos
Apresentação de Antígeno , Infecções por Citomegalovirus , Humanos , Citomegalovirus , Células Matadoras Naturais , Citocinas/metabolismo
3.
Cells ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391930

RESUMO

(1) Background: We have previously shown that the use of an artificial supramolecular two-component system based on chimeric recombinant proteins 4D5scFv-barnase and barstar-heat shock protein 70 KDa (HSP70) allows targeted delivery of HSP70 to the surface of tumor cells bearing HER2/neu antigen. In this work, we studied the possibility to using DARPin9_29-barnase as the first targeting module recognizing HER2/neu-antigen in the HSP70 delivery system. (2) Methods: The effect of the developed systems for HSP70 delivery to human carcinomas SK-BR-3 and BT474 cells hyperexpressing HER2/neu on the activation of cytotoxic effectors of the immune cells was studied in vitro. (3) Results: The results obtained by confocal microscopy and cytofluorimetric analysis confirmed the binding of HSP70 or its fragment HSP70-16 on the surface of the treated cells. In response to the delivery of HSP70 to tumor cells, we observed an increase in the cytolytic activity of different cytotoxic effector immune cells from human peripheral blood. (4) Conclusions: Targeted modification of the tumor cell surface with molecular structures recognized by cytotoxic effectors of the immune system is among new promising approaches to antitumor immunotherapy.


Assuntos
Antineoplásicos , Proteínas de Bactérias , Carcinoma , Ribonucleases , Humanos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Choque Térmico HSP70
4.
Pharmaceutics ; 16(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276503

RESUMO

Human cytomegalovirus (HCMV)-specific adaptive NK cells are capable of recognizing viral peptides presented by HLA-E on infected cells via the NKG2C receptor. Using retroviral transduction, we have generated a K562-cell-based line expressing HLA-E in the presence of the HLA-E-stabilizing peptide, which has previously shown the capacity to enhance adaptive NK cell response. The obtained K562-21E cell line was employed to investigate proliferative responses of the CD57- NK cell subset of HCMV-seropositive and seronegative donors. Stimulation of CD57- NK cells with K562-21E/peptide resulted in an increased cell expansion during the 12-day culturing period, regardless of the serological HCMV status of the donor. The enhanced proliferation in response to the peptide was associated with a greater proportion of CD56brightHLA-DR+ NK cells. In later stages of cultivation, the greatest proliferative response to K562-21E/peptide was shown for a highly HCMV-seropositive donor. These expanded NK cells were characterized by the accumulation of CD57-KIR2DL2/3+NKG2C+NKG2A- cells, which are hypothesized to represent adaptive NK cell progenitors. The K562-21E feeder cells can be applied both for the accumulation of NK cells as therapeutic effectors, and for the study of NK cell maturation into the adaptive state after the HLA-E peptide presentation.

5.
Biomolecules ; 13(9)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759716

RESUMO

The only human cathelicidin, LL-37, is a host defense antimicrobial peptide with antimicrobial activities against protozoans, fungi, Gram(+) and Gram(-) bacteria, and enveloped viruses. It has been shown in experiments in vitro that LL-37 is able to induce the production of various inflammatory and anti-inflammatory cytokines and chemokines by different human cell types. However, it remains an open question whether such cytokine induction is physiologically relevant, as LL-37 exhibited its immunomodulatory properties at concentrations that are much higher (>20 µg/mL) than those observed in non-inflamed tissues (1-5 µg/mL). In the current study, we assessed the permeability of LL-37 across the Caco-2 polarized monolayer and showed that this peptide could pass through the Caco-2 monolayer with low efficiency, which predetermined its low absorption in the gut. We showed that LL-37 at low physiological concentrations (<5 µg/mL) was not able to directly activate monocytes. However, in the presence of polarized epithelial monolayers, LL-37 is able to activate monocytes through the MAPK/ERK signaling pathway and induce the production of cytokines, as assessed by a multiplex assay at the protein level. We have demonstrated that LL-37 is able to fulfill its immunomodulatory action in vivo in non-inflamed tissues at low physiological concentrations. In the present work, we revealed a key role of epithelial-immune cell crosstalk in the implementation of immunomodulatory functions of the human cathelicidin LL-37, which might shed light on its physiological action in vivo.


Assuntos
Catelicidinas , Células Epiteliais , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células CACO-2 , Catelicidinas/farmacologia , Citocinas , Transdução de Sinais
6.
Vaccines (Basel) ; 11(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376436

RESUMO

A highly effective humoral immune response induced by the Sputnik V vaccine was demonstrated in independent studies, as well as in large-scale post-vaccination follow-up studies. However, the shifts in the cell-mediated immunity induced by Sputnik V vaccination are still under investigation. This study was aimed at estimating the impact of Sputnik V on activating and inhibitory receptors, activation and proliferative senescence markers in NK and T lymphocytes. The effects of Sputnik V were evaluated by the comparison of PBMC samples prior to vaccination, and then three days and three weeks following the second (boost) dose. The prime-boost format of Sputnik V vaccination induced a contraction in the T cell fraction of senescent CD57+ cells and a decrease in HLA-DR-expressing T cells. The proportion of NKG2A+ T cells was down-regulated after vaccination, whereas the PD-1 level was not affected significantly. A temporal increase in activation levels of NK cells and NKT-like cells was recorded, dependent on whether the individuals had COVID-19 prior to vaccination. A short-term elevation of the activating NKG2D and CD16 was observed in NK cells. Overall, the findings of the study are in favor of the Sputnik V vaccine not provoking a dramatic phenotypic rearrangement in T and NK cells, although it induces their slight temporal non-specific activation.

7.
Eur J Clin Nutr ; 77(8): 803-810, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37311868

RESUMO

BACKGROUND: Lactase persistence-the ability to digest lactose through adulthood-is closely related to evolutionary adaptations and has affected many populations since the beginning of cattle breeding. Nevertheless, the contrast initial phenotype, lactase non-persistence or adult lactase deficiency, is still observed in large numbers of people worldwide. METHODS: We performed a multiethnic genetic study of lactase deficiency on 24,439 people, the largest in Russia to date. The percent of each population group was estimated according to the local ancestry inference results. Additionally, we calculated frequencies of rs4988235 GG genotype in Russian regions using the information of current location and birthplace data from the client's questionnaire. RESULTS: The attained results show that among all studied population groups, the frequency of GG genotype in rs4988235 is higher than the average in the European populations. In particular, the prevalence of lactase deficiency genotype in the East Slavs group was 42.8% (95% CI: 42.1-43.4%). We also investigated the regional prevalence of lactase deficiency based on the current place of residence. CONCLUSIONS: Our study emphasizes the significance of genetic testing for diagnostics, i.e., specifically for lactose intolerance parameter, as well as the scale of the problem of lactase deficiency in Russia which needs to be addressed by the healthcare and food sectors.


Assuntos
Intolerância à Lactose , Humanos , Animais , Bovinos , Intolerância à Lactose/epidemiologia , Intolerância à Lactose/genética , Lactase/genética , Lactose , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
8.
Biomedicines ; 11(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37189709

RESUMO

Telomerase reverse transcriptase (TERT), a core part of telomerase, has been known for a long time only for its telomere lengthening function by reverse transcription of RNA template. Currently, TERT is considered as an intriguing link between multiple signaling pathways. The diverse intracellular localization of TERT corresponds to a wide range of functional activities. In addition to the canonical function of protecting chromosome ends, TERT by itself or as a part of the telomerase complex participates in cell stress responses, gene regulation and mitochondria functioning. Upregulation of TERT expression and increased telomerase activity in cancer and somatic cells relate to improved survival and persistence of such cells. In this review, we summarize the data for a comprehensive understanding of the role of TERT in cell death regulation, with a focus on the interaction of TERT with signaling pathways involved in cell survival and stress response.

9.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240393

RESUMO

The effectiveness of the antiviral immune response largely depends on the activation of cytotoxic T cells. The heterogeneous group of functionally active T cells expressing the CD56 molecule (NKT-like cells), that combines the properties of T lymphocytes and NK cells, is poorly studied in COVID-19. This work aimed to analyze the activation and differentiation of both circulating NKT-like cells and CD56- T cells during COVID-19 among intensive care unit (ICU) patients, moderate severity (MS) patients, and convalescents. A decreased proportion of CD56+ T cells was found in ICU patients with fatal outcome. Severe COVID-19 was accompanied by a decrease in the proportion of CD8+ T cells, mainly due to the CD56- cell death, and a redistribution of the NKT-like cell subset composition with a predominance of more differentiated cytotoxic CD8+ T cells. The differentiation process was accompanied by an increase in the proportions of KIR2DL2/3+ and NKp30+ cells in the CD56+ T cell subset of COVID-19 patients and convalescents. Decreased percentages of NKG2D+ and NKG2A+ cells and increased PD-1 and HLA-DR expression levels were found in both CD56- and CD56+ T cells, and can be considered as indicators of COVID-19 progression. In the CD56- T cell fraction, increased CD16 levels were observed in MS patients and in ICU patients with lethal outcome, suggesting a negative role for CD56-CD16+ T cells in COVID-19. Overall, our findings suggest an antiviral role of CD56+ T cells in COVID-19.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , COVID-19/metabolismo , Subpopulações de Linfócitos T , Células Matadoras Naturais , Diferenciação Celular
10.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768315

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is accompanied by a dysregulated immune response. In particular, NK cells, involved in the antiviral response, are affected by the infection. This study aimed to investigate circulating NK cells with a focus on their activation, depletion, changes in the surface expression of key receptors, and functional activity during COVID-19, among intensive care unit (ICU) patients, moderately ill patients, and convalescents (CCP). Our data confirmed that NK cell activation in patients with COVID-19 is accompanied by changes in circulating cytokines. The progression of COVID-19 was associated with a coordinated decrease in the proportion of NKG2D+ and CD16+ NK cells, and an increase in PD-1, which indicated their exhaustion. A higher content of NKG2D+ NK cells distinguished surviving patients from non-survivors in the ICU group. NK cell exhaustion in ICU patients was additionally confirmed by a strong negative correlation of PD-1 and natural cytotoxicity levels. In moderately ill patients and convalescents, correlations were found between the levels of CD57, NKG2C, and NKp30, which may indicate the formation of adaptive NK cells. A reduced NKp30 level was observed in patients with a lethal outcome. Altogether, the phenotypic changes in circulating NK cells of COVID-19 patients suggest that the intense activation of NK cells during SARS-CoV-2 infection, most likely induced by cytokines, is accompanied by NK cell exhaustion, the extent of which may be critical for the disease outcome.


Assuntos
COVID-19 , Humanos , Citocinas , SARS-CoV-2 , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Receptor de Morte Celular Programada 1 , Células Matadoras Naturais
11.
Eur J Clin Nutr ; 77(5): 574-578, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36690773

RESUMO

BACKGROUND: Overweight is the scourge of modern society and a major risk factor for many diseases. For this reason, understanding the genetic component predisposing to high body mass index (BMI) seems to be an important task along with preventive measures aimed at improving eating behavior and increasing physical activity. METHODS: We analyzed genetic data of a European cohort (n = 21,080, 47.25% women, East Slavs ancestry >80%) for 5 frequently found genes in the context of association with obesity: IPX3 (rs3751723), MC4R (rs17782313), TMEM18 (rs6548238), PPARG (rs1801282) and FTO (rs9939609). RESULTS: Our study revealed significant associations of FTO (rs9939609) (ß = 0.37 (kg/m2)/allele, p = <2 × 10-16), MC4R (rs17782313) (ß = 0.28 (kg/m2)/allele, p = 5.79 × 10-9), TMEM18 (rs6548238) (ß = 0.29 (kg/m2)/allele, p = 2.43 × 10-8) with BMI and risk of obesity. CONCLUSIONS: The results confirm the contribution of FTO, M4CR, and TMEM18 genes to the mechanism of body weight regulation and control.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Masculino , Índice de Massa Corporal , Obesidade/genética , Obesidade/epidemiologia , Peso Corporal , Genótipo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
12.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142573

RESUMO

According to previous studies, during Drosophila embryogenesis, the recruitment of RNA polymerase II precedes active gene transcription. This work is aimed at exploring whether this mechanism is used during Drosophila metamorphosis. In addition, the composition of the RNA polymerase II "paused" complexes associated with promoters at different developmental stages are described in detail. For this purpose, we performed ChIP-Seq analysis using antibodies for various modifications of RNA polymerase II (total, Pol II CTD Ser5P, and Pol II CTD Ser2P) as well as for subunits of the NELF, DSIF, and PAF complexes and Brd4/Fs(1)h that control transcription elongation. We found that during metamorphosis, similar to mid-embryogenesis, the promoters were bound by RNA polymerase II in the "paused" state, preparing for activation at later stages of development. During mid-embryogenesis, RNA polymerase II in a "pause" state was phosphorylated at Ser5 and Ser2 of Pol II CTD and bound the NELF, DSIF, and PAF complexes, but not Brd4/Fs(1)h. During metamorphosis, the "paused" RNA polymerase II complex included Brd4/Fs(1)h in addition to NELF, DSIF, and PAF. The RNA polymerase II in this complex was phosphorylated at Ser5 of Pol II CTD, but not at Ser2. These results indicate that, during mid-embryogenesis, RNA polymerase II stalls in the "post-pause" state, being phosphorylated at Ser2 of Pol II CTD (after the stage of p-TEFb action). During metamorphosis, the "pause" mechanism is closer to classical promoter-proximal pausing and is characterized by a low level of Pol II CTD Ser2P.


Assuntos
Proteínas de Drosophila , RNA Polimerase II , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
13.
Front Oncol ; 12: 909505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814376

RESUMO

Triple-negative breast cancer has no specific treatment and unfavorable prognosis. Eribulin is one of the drugs widely used in this cohort of patients. In addition to its antimitotic effect, eribulin has an immunomodulant effect on the tumor microenvironment. In this study, we discover immunological markers, such as tumor-infiltrating lymphocytes, CD8+, CD4+, FoxP3+, CD20+ lymphocytes, and their PD1 positivity or negativity, with the ability to predict benefits from eribulin within locally advanced or metastatic triple-negative breast cancer. The primary objective was to explore the association of composition of immune cells in the microenvironment with response to eribulin. The key secondary objective was overall survival. Seven-color multiplex immunofluorescence was used to phenotype lymphocytes in the primary tumor. It has been shown that the PD1-negative-to-PD1-positive B cells ratio in primary tumors more than 3 is an independent predictor of the short-term effectiveness of eribulin [OR (95%CI) 14.09 (1.29-153.35), p=0.0029] and worse overall survival [HR (95%CI) 11.25 (1.37-70.25), p=0.0009] in patients with locally advanced or metastatic triple-negative breast cancer.

14.
Biomolecules ; 12(4)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35454081

RESUMO

Parkinson disease (PD) is attributed to a proteostasis disorder mediated by α-synuclein accumulating in a specific brain region. PD manifestation is often related to extraneuronal alterations, some of which could be used as diagnostic or prognostic PD biomarkers. In this work, we studied the shifts in the expression of proteostasis-associated chaperones of the HSP70 family and autophagy-dependent p62 protein values in the peripheral blood mononuclear cells (PBMC) of mild to moderate PD patients. Although we did not detect any changes in the intracellular HSP70 protein pool in PD patients compared to non-PD controls, an increase in the transcriptional activity of the stress-associated HSPA1A/B and HSPA6 genes was observed in these cells. Basal p62 content was found to be increased in PD patients' PBMC, similarly to the p62 level in substantia nigra neural cells in PD. Moreover, the spontaneous apoptosis level was increased among PBMC and positively correlated with the p62 intracellular level in the PD group. A combined HSPA6- and p62-based analysis among 26 PD patients and 36 age-matched non-PD controls pointed out the diagnostic significance of these markers, with intermediate sensitivity and high specificity of this combination when observing patients diagnosed with PD.


Assuntos
Proteínas de Choque Térmico HSP70 , Doença de Parkinson , Autofagia/fisiologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteostase
15.
Front Genet ; 13: 972196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685848

RESUMO

We present the results of the depression Genome-wide association studies study performed on a cohort of Russian-descent individuals, which identified a novel association at chromosome 7q21 locus. Gene prioritization analysis based on already known depression risk genes indicated MAGI2 (S-SCAM) as the most probable gene from the locus and potential susceptibility gene for the disease. Brain and gut expression patterns were the main features highlighting functional relatedness of MAGI2 to the previously known depression risk genes. Local genetic covariance analysis, analysis of gene expression, provided initial suggestive evidence of hospital anxiety and depression scale and diagnostic and statistical manual of mental disorders scales having a different relationship with gut-brain axis disturbance. It should be noted, that while several independent methods successfully in silico validate the role of MAGI2, we were unable to replicate genetic association for the leading variant in the MAGI2 locus, therefore the role of rs521851 in depression should be interpreted with caution.

16.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884936

RESUMO

Immunosenescence is a process of remodeling the immune system under the influence of chronic inflammation during aging. Parkinson's disease (PD) is a common age-associated neurodegenerative disorder and is frequently accompanied by neuroinflammation. On the other hand, cytomegalovirus (CMV), one of the most spread infections in humans, may induce chronic inflammation which contributes to immunosenescence, differentiation and the inflation of T cells and NK cells. Currently, there is no clear understanding of immunosenescence severity in PD patients infected with CMV. In this study, we analyzed differentiation stages and immunosenescence characteristics of T cells and NK cells in 31 patients with mild and moderate PD severity, 33 age-matched and 30 young healthy donors. The PD patients were 100% CMV-seropositive compared to 76% age-matched and 73% young CMV-infected healthy donors. The proportion of effector memory T cells re-expressing CD45RA, CD57+CD56- T cells and CD57+CD56+ T cells was significantly reduced in PD patients compared with CMV-seropositive age-matched healthy individuals. The CD57+CD56- T cell proportion in PD patients was similar to that of CMV-seropositive young healthy donors. Thus, PD is characterized by reduced peripheral blood T cell immunosenescence, even against the background of CMV infection.


Assuntos
Infecções por Citomegalovirus/sangue , Subpopulações de Linfócitos/imunologia , Doença de Parkinson/imunologia , Doença de Parkinson/virologia , Fatores Etários , Idoso , Antígeno CD56/metabolismo , Antígenos CD57/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Infecções por Citomegalovirus/imunologia , Feminino , Humanos , Imunossenescência , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Leucócitos Mononucleares/imunologia , Contagem de Linfócitos , Subpopulações de Linfócitos/virologia , Masculino , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Doença de Parkinson/sangue
17.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948123

RESUMO

Nowadays, the use of genetically modified NK cells is a promising strategy for cancer immunotherapy. The additional insertion of genes capable of inducing cell suicide allows for the timely elimination of the modified NK cells. Different subsets of the heterogenic NK cell population may differ in proliferative potential, in susceptibility to genetic viral transduction, and to the subsequent induction of cell death. The CD57-NKG2C+ NK cells are of special interest as potential candidates for therapeutic usage due to their high proliferative potential and certain features of adaptive NK cells. In this study, CD57- NK cell subsets differing in KIR2DL2/3 and NKG2C expression were transduced with the iCasp9 suicide gene. The highest transduction efficacy was observed in the KIR2DL2/3+NKG2C+ NK cell subset, which demonstrated an increased proliferative potential with prolonged cultivation. The increased transduction efficiency of the cell cultures was associated with the higher expression level of the HLA-DR activation marker. Among the iCasp9-transduced subsets, KIR2DL2/3+ cells had the weakest response to the apoptosis induction by the chemical inductor of dimerization (CID). Thus, KIR2DL2/3+NKG2C+ NK cells showed an increased susceptibility to the iCasp9 retroviral transduction, which was associated with higher proliferative potential and activation status. However, the complete elimination of these cells with CID is impeded.


Assuntos
Sistemas CRISPR-Cas , Proliferação de Células , Regulação da Expressão Gênica , Vetores Genéticos , Ativação Linfocitária , Subfamília C de Receptores Semelhantes a Lectina de Células NK/biossíntese , Receptores KIR2DL2/biossíntese , Receptores KIR2DL3/biossíntese , Retroviridae , Transdução Genética , Morte Celular , Humanos , Células K562 , Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Receptores KIR2DL2/genética , Receptores KIR2DL3/genética
18.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768814

RESUMO

NK cells are an attractive target for cancer immunotherapy due to their potent antitumor activity. The main advantage of using NK cells as cytotoxic effectors over T cells is a reduced risk of graft versus host disease. At present, several variants of NK-cell-based therapies are undergoing clinical trials and show considerable effectiveness for hematological tumors. In these types of cancers, the immune cells themselves often undergo malignant transformation, which determines the features of the disease. In contrast, the current use of NK cells as therapeutic agents for the treatment of solid tumors is much less promising. Most studies are at the stage of preclinical investigation, but few progress to clinical trials. Low efficiency of NK cell migration and functional activity in the tumor environment are currently considered the major barriers to NK cell anti-tumor therapies. Various therapeutic combinations, genetic engineering methods, alternative sources for obtaining NK cells, and other techniques are aiming at the development of promising NK cell anticancer therapies, regardless of tumorigenesis. In this review, we compare the role of NK cells in the pathogenesis of hematological and solid tumors and discuss current prospects of NK-cell-based therapy for hematological and solid tumors.


Assuntos
Imunoterapia , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Engenharia Genética , Neoplasias Hematológicas , Humanos , Neoplasias/imunologia
19.
Biomedicines ; 9(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207853

RESUMO

NK cells are the first line of defense against viruses and malignant cells, and their natural functionality makes these cells a promising candidate for cancer cell therapy. The genetic modifications of NK cells, allowing them to overcome some of their inherent limitations, such as low proliferative potential, can enable their use as a therapeutic product. We demonstrate that hTERT-engineered NK cell cultures maintain a high percentage of cells in the S/G2 phase for an extended time after transduction, while the life span of NK cells is measurably extended. Bulk and clonal NK cell cultures pre-activated in vitro with IL-2 and K562-mbIL21 feeder cells can be transduced with hTERT more efficiently compared with the cells activated with IL-2 alone. Overexpressed hTERT was functionally active in transduced NK cells, which displayed upregulated expression of the activation marker HLA-DR, and decreased expression of the maturation marker CD57 and activating receptor NKp46. Larger numbers of KIR2DL2/3+ cells in hTERT-engineered populations may indicate that NK cells with this phenotype are more susceptible to transduction. The hTERT-modified NK cells demonstrated a high natural cytotoxic response towards K562 cells and stably expressed Ki67, a proliferation marker. Overall, our data show that ectopic hTERT expression in NK cells enhances their activation and proliferation, extends in vitro life span, and can be a useful tool in developing NK-based cancer cell therapies.

20.
Front Immunol ; 12: 662128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012446

RESUMO

NK cells play an important role in the control of tuberculosis infection: they are not only able to kill the infected cells, but also control the activity of macrophages and development of the adaptive immune response. Still, there is little information on the role of specific NK cell subsets in this network. In this study, we focused on the mycobacteria-driven responses of the NK cells expressing HLA-DR - a type of MHC class II. We have revealed that this subset is increased in the peripheral blood of patients with primary diagnosed tuberculosis, and expands in response to in vitro stimulation with ultrasonically destroyed Mycobacterium tuberculosis cells (sonicate). The expanded HLA-DR+ NK cells had less differentiated phenotype, higher proliferative activity and increased expression of NKp30 and NKp46 receptors. HLA-DR+CD56dim NK cells showed higher IFNγ production and degranulation level than the respective HLA-DR- NK cells in response to both 24 h and 7 day stimulation with sonicate, while HLA-DR+CD56bright NK cells mostly demonstarted similar high responsiveness to the same stimulating conditions as their HLA-DR-CD56bright counterparts. After preliminary incubation with destroyed mycobacteria, cytokine-activated HLA-DR-expressing NK cells were able to mediate mycobacteria-induced and HLA-DR-dependent cytokine production in autologous CD4+ T cells. Thus, functionally active HLA-DR+ cells seem to be one of the NK cell subsets providing an important link to the adaptive immunity.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos HLA-DR/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Mycobacterium/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Antígenos de Bactérias/farmacologia , Antígenos HLA-DR/genética , Humanos , Interferon gama/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Mycobacterium/química , Fenótipo , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...